Natural Fibre Reinforced Plastics and Solid Wood – A Comparison of Terrace Floorings using LCA

Manfred Schmid1, Silke Feifel2, Kyra Seibert1, Oliver Stübs1

1 SKZ – German Plastics Center
2 Karlsruhe Institute of Technology (KIT)

SETAC EUROPE 18th LCA CASE STUDY SYMPOSIUM
Copenhagen, 28/11/2012
Contents

• Introduction
 • Project content
 • Material: Wood Polymer Composties (WPC)

• LCA
 • Scope
 • LCI: Wood fibres
 • LCIA
 • Interpretation

• LCM-Software Elwood 2
Introduction

Project content

1. Comparative LCA of **WPC deckings** and **wooden alternatives**

2. Enable WPC producers and manufacturers to **perform individual LCA results**

Aims:

- Benchmarking
- Life Cycle Management software
Introduction

Material: Wood polymer composites (WPC)

<table>
<thead>
<tr>
<th>Matrix polymer</th>
<th>Natural fibre</th>
<th>Additives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene, Polypropylene or Polyvinylchloride</td>
<td>Wood fibres (usually spruce)</td>
<td>Stabilizers, Bonding agents, Colour pigments, Biocides/fungizides</td>
</tr>
<tr>
<td>30-70%</td>
<td>20-60%</td>
<td><5%</td>
</tr>
</tbody>
</table>
Introduction

Products

Source: NATURinFORM
Source: Werzalit
Source: jeluplast
Source: jeluplast
Contents

• Introduction
 • Project content
 • Material: Wood Polymer Composties (WPC)

• LCA
 • Scope
 • LCI: Wood fibres
 • LCIA
 • Interpretation

• LCM-Software Elwood 2
Life Cycle Assessment

Scope: Production systems & system boundaries

Production phase

Solid wood
- Lumber production
- Sawing
- Technical drying
- Pressure treatment
- Terrace FU = 1 m²*

WPC
- Polymer production
- Wood fibre production
- Additive production
- Processing
- Extrusion
- Terrace FU = 1 m²*

Use phase

Maintenance

EoL

- Energy recovery
 - Excluded: Assembly, disassembly
- Recycling
 - Excluded: Assembly, disassembly

* FU: Production, 15 years of use and energy recovery of 1 m² of terrace
Life Cycle Assessment

LCI: Central topics

1. Life time of deckings
2. Maintenance behaviour
3. Wood fibres
Life Cycle Assessment

LCI: Wood fibres

Spruce, in forest → Lumber

Fresh wood (Motor saw)
+ barking, chaffing, drying, grinding

Fresh wood (Harvester)
+ barking, chaffing, drying, grinding

Sawing

Industrial restwood
+ chaffing, drying, grinding

Rough boards

Planing

Wood shavings
+ grinding

Planed boards
Life Cycle Assessment

LCI: Wood fibres

- Spruce, in forest
 - Fresh wood (Motor saw)
 - Not state-of-the-art
 - Fresh wood (Harvester)
- Lumber
 - Sawing
 - Industrial restwood
 - Allocated by-product
 - Rough boards
 - Planing
 - Wood shavings
 - Allocated by-product
 - Planed boards
Life Cycle Assessment

LCI: Wood fibres

- **Harvesting**
 - Standing tree
 - Harvesting
 - Stem wood
 - Barking
 - Stem wood debarked
 - Chaffing
 - Wood chaff
 - Drying
 - Dry wood chaff
 - Grinding
 - Wood flour

System border

- Wood off-cuts
- Chaffed bark

Resources:
- Harvester
- Forwarder
- Electricity
- Oil
- Steel
- Electricity
- Oil
- Steel
- Electricity
- Oil
- Steel
- Electricity
Life Cycle Assessment

LCIA: Benchmarking

1 m² terrace, lifetime 15 years
WPC: PE with 70% wood fibre

- **Production phase**
- **Use phase**
- **EoL**

Graph showing the life cycle assessment for Bilinga, Pine, WPC hollow, and WPC solid for different environmental indicators (GWP, ODP, POCP, AP, EP, CED).
Life Cycle Assessment

Interpretation of LCA results

1. Production phase is dominant
2. Maintenance is not relevant
3. EoL is less important (except GWP) – but Recycling is an option for WPC
4. Pine wood is best choice in all categories
5. WPC hollow chamber profile is advantageous to bilinga, except GWP & EP
6. With a 50% higher life-time than bilinga WPC hollow chamber profile would be absolutely advantageous to bilinga
7. With a 100% higher life-time than pine WPC hollow chamber profile would be comparable to pine wood (except GWP)
Contents

• Introduction
 • Project content
 • Material: Wood Polymer Composites (WPC)

• LCA
 • Scope
 • LCI: Wood fibres
 • LCIA
 • Interpretation

• LCM-Software Elwood 2
<table>
<thead>
<tr>
<th>Dimensionen</th>
<th>Zusammensetzung</th>
<th>Transport</th>
<th>Fertigung</th>
<th>Reinigung</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPC-Decking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gewicht laufender Meter</td>
<td>kg</td>
<td>kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breite Decking</td>
<td>cm</td>
<td>cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standardlänge Decking</td>
<td>m</td>
<td>m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mindestabstand zwischen zwei Deckings</td>
<td>cm</td>
<td>cm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unterkonstruktion			

Konstruktions balken			
Gewicht laufender Meter	kg	kg	
Länge pro qm Terrasse	m	m	
Partners

SKZ – German Plastics Center
M. Sc. Manfred Schmid
KFE gGmbH
Friedrich-Bergius Ring 22
97076 Würzburg

Karlsruhe Institute of Technology
M. Sc., Dipl.-Ing. (FH) Silke Feifel
Institut für Technikfolgenabschätzung und Systemanalyse
Hermann-von-Helmholtz-Platz 1
76344 Eggenstein-Leopoldshafen

Georg August University Göttingen
Dr. Andreas Krause
Abteilung Holzbiologie und Holzprodukte
Büsgenweg 4
37077 Göttingen

Acknowledgement
The IGF-project 16379 N of the research association „Fördergemeinschaft für das Süddeutsche Kunststoff-Zentrum e.V.“ was funded by AiF as part of the programme to support "Industrial Community Research and Development" (IGF), with funds from the Federal Ministry of Economics and Technology (BMWi) following an Decision of the German Bundestag.
Manfred Schmid
Material Flow Manager M. Sc.
Business Unit Sustainability

Phone: +49-931-4104-266
E-Mail: m.schmid@skz.de
Address: SKZ – German Plastics Center
Friedrich-Bergius-Ring 22
97076 Würzburg